\qquad

Download codes for this lecture at:
Lecture 2 codes: https://www.dropbox.com/s/bnvk63bbwhgemhq/Lec2.R?dl=0

Review

We went over the basics of R with Rstudio cloud in Lecture 1. We also started learning about probability and randomness, and how to simulate experiments in R.

Let's review with a little more formality. Suppose we flip a p-coin, and let Y be the outcome: either 1 (heads) or 0 (tails). Then

$$
\operatorname{Pr}(Y=1)=p .
$$

If we don't know what p is, then just seeing one coin-toss we can't understand what value of p we have obtained.

Suppose we flip the coin n times: $Y_{1}, Y_{2}, \ldots, Y_{n}$, then for each Y_{i},

$$
\operatorname{Pr}\left(Y_{i}=1\right)=p .
$$

So now we can borrow information from n different coin-tosses. A good guess of what p would be \hat{p}, where we define \hat{p} as

$$
\hat{p}:=\frac{\text { Number of heads }}{\text { Total coin tosses }}=\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{n} .
$$

Thus, a good guess of p is the average of the observed numbers. Such a guess, that is based on random events, is called an estimate.

Using this, try the Worksheet 1 , question 1 and 2 again.

Random draws in (a, b)

When the number of outcomes is countable, probabilities are relatively easy to understand. For example in tossing a coin, there are two outcomes. In rolling a regular die, there are six outcomes.

But what about when the number of outcomes are uncountably infinite?
For example, consider the experiment of drawing a random number between $(0,1)$. How many outcomes are possible?

Let's try to do such experiments in R:

```
## Uniform draws between (0,1)
runif(1, min = 0, max = 1)
```

```
## Uniform draws between (-4, 6)
runif(1, min = -4, max = 6)
```

How do we check, whether these are uniform draws?

```
## Q: How do you check whether draws are uniform??
## A: Get many draws and then visualize!
uni_draws = runif(1000, min = 0, max = 1)
hist(uni_draws, main = "Histrogram of Uniform draws (0,1)")
```

When you draw the above histogram plot in R , you will see how the numbers drawn are distributed between $(0,1)$.
$Q:$ What is the probability that a sampled number between $(0,1)$ is 0.5 ?
A : Clearly, there are infinite choices of numbers between $(0,1)$ or any interval. The number of ways to generate the event is 1 , and the number of possible outcomes are ∞. So:

$$
\operatorname{Pr}(\text { number is } 0.5)=0!
$$

And infact, this is true for all numbers. So for uncountably infinite problems, we cannot study probabilities in the same way as before. Instead, we define sets.

Consider the event: $A=$ number is in a set $(0, .2)$. Then,

$$
\operatorname{Pr}(A)=\frac{.2-0}{1-0}=.2 .
$$

In general, when obtaining uniform samples from (a, b). The probability of obtaining a number between $\left(a_{1}-b_{1}\right)$ is

$$
\operatorname{Pr}(A)=\frac{b_{1}-a_{1}}{b-a} .
$$

Naturally, $a_{1}>a$ and $b_{1}<b$. Let's do this more formally.

A little more formally

Let $X \sim \operatorname{Uniform}(0,1)$. That is, let X be a uniformly chosen number between 0 and 1 . Define Y

$$
Y=\mathbb{I}\left\{a_{1}<X<b_{1}\right\} .
$$

Then Y is either 0 or 1 . Since the outcomes now are either 1 or 0 , we can view 1 as a success (heads) and 0 as a failure (tails). That is, the event Y is like a coin-toss where

$$
\operatorname{Pr}(Y=1)=\operatorname{Pr}\left(a_{1}<X<b_{1}\right):=p \quad(\text { say }) .
$$

Let's do this in R!

```
### Simulate the experiment Y = I( 0 < X < .2)
# where X = Uniform(0,1).
uni_draws = runif(1, min = 0, max = 1)
# Check whether uni_draw < . 2
# multiplying by 1, makes it a number, rather than TRUE/FALSE
check <- 1*(uni_draws < .2)
check
```

For some chosen n, we get different

$$
X_{1}, X_{2}, X_{3}, \ldots, X_{n} \sim \operatorname{Uniform}(0,1)
$$

For each $i=1, \ldots, n$, set

$$
Y_{i}=\mathbb{I}\left\{a_{1}<X_{i}<b_{1}\right\} .
$$

Based on each of the X_{i} 's were drawn, some Y_{i} 's will be 0 and some will be 1. If we forget that the X 's were involved, then the Y s essentially behave like coin-tosses (potentially unfair). So we can obtain an estimate of p, as before. Let's try it in R for $(a, b)=(0,1)$ and $\left(a_{1}, b_{1}\right)=(0, .20)$.

```
## Verify the Pr(Y = 1)
n = 1000
uni_draws = runif(n, min = 0, max = 1)
# Check whether uni_draw < . 2
# multiplying by 1, makes it a number, rather than TRUE/FALSE
check <- 1*(uni_draws < 0.2)
check
## Estimate of Pr(Y = 1)
mean(check)
```

